

Trimley St Mary PRIMARY SCHOOL

If you belleve you will achiove
Maths Policy 2023

Statement of Intent

At Trimley St Mary Primary School, we aim to ensure that all pupils become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately. That they reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language. And lastly, that they can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

AIMS AND OBJECTIVES:

The aims of mathematics and how these contribute to the school's aims.
The school aims to:

- Provide a relevant, challenging and enjoyable curriculum for all pupils;
- Provide a stimulating environment and appropriate resources so that pupils can develop their mathematical skills to their full potential;
- Meet the requirements of the National Curriculum programmes of study;
- Promote mathematics as an essential element of communication, which allows pupils to describe, illustrate, interpret, predict and explain;
- Show pupils the wonder of mathematics and promote ways of doing mathematics which harness their imagination, initiative and flexibility of mind;
- Build pupils' confidence by creating an "I can do this" ethos in the classroom;
- Encourage pupils to work systematically and to show a respect for accuracy and meaning;
- Encourage pupils to work independently and with others.
- Promote subject specific vocabulary.

Curriculum Intent

The $8 \mathrm{C}_{s}$ - Our curriculum is underpinned by core learning skills that all children need in order to be effective learners. Children use these skills to evaluate themselves as learners, in addition to their knowledge and understanding of concepts within History.

Lesson timings

The main maths lesson is delivered in the morning with KS2 lessons lasting 1 hour 15 mins and kS1 lasting 1 hour. Pupils also participate in short burst maths sessions in the afternoons in and around their other curriculum learning. Content is delivered in blocks of learning, varying in length, dependent upon the nature of the topic and skills being developed. For example, a unit on place value may not last as long as a unit based around fractions. Teachers have the professional scope to make adjustments where they think they are needed. For example, if more than one lesson is needed to embed a skill then this can be done. There is no need for Learning Sequences to begin on a Monday or to be completed on a Friday. This being said, there is an expectation that each stage of the learning process takes place and is evident through books, learning walls, flip charts and planning.

A typical lesson in Years 1 to 6 is structured along the following lines:

- Fluent in Five (about 5 to 10 minutes) focusing on whole-class work to rehearse, sharpen and develop calculation skills.
- Rapid reasoning, a chance to apply calculation skills to challenging problems
- The main teaching activity (about 40 to 50 minutes) which comprises of a significant amount of direct teaching and pupils' activities involving work with the whole class, groups, pairs or individuals as appropriate. Lessons will give children time to discuss mathematical ideas and their work with their peers and adults
- Mini - plenaries will take place during a lesson to enable the teacher to address misconceptions and fine-tune the learning.

We endeavour to set work that is challenging, motivating and encourages the pupils to discuss and explain what they are doing. KS1 also have their awesome maths slots each afternoon, this is currently following the NCETM Maths Mastery Teaching Programme, where Rekenreks and other resources and manipulatives are used to explore and investigate number. The use of 'sentence stems' underpins this approach and encourages children to verbalise their learning and reasoning.

Domain Coverage
It is vital that we adjust our mathematical teaching to meet the needs of our pupils in terms of what we use as a stimulus and how we cover each National Curriculum domain. Below are details of the mathematical domains for both Key Stage 1 and Key Stage 2. In all phases, teachers use these domains to frame mathematical learning
Editable SATS style question formats are also utilised so that children become familiar with the layout and requirements of the formal tests.

KEY STAGE ONE

Strand	Substrand	Content domain reference
Number and place value	counting (in multiples)	N1
	read, write, order and compare numbers	N2
	identify, represent and rounding	N4
	number problems	N6
Strand	Substrand	Content domain reference
Addition, subtraction, multiplication and division (calculations)	add/ subtract mentally	c1
	add/ subtract using written methods	C2
	use inverses and check	C3
	add / subtract to solve problems	c4
	multiply / divide mentally	c6
	multiply / divide using written methods	c7
	solve problems based on all four operations and knowledge of the commutative facts	c8
	order of operations	c9
Fractions	recognise, find, write, name and count fractions	F1
	Qquivalont fractions	F2
Measurement	compare, describe and order measures	M1
	measure and read scales	M2
	money	м3
	telling time, ordering time and units of time	M4
	solve mathematical problems involving measures	M9
Geometry - properties of shape	recognise and name common shapes	G1
	describe properties and classify shapes	G2
	draw and make shapes and relate 2-D to 3-D shapes	G3
Geometry - position and direction	patterns	P1
	describe position, direction and movement	P2
Statistics	interpret and represent data	S1
	solve problems imolving data	52

KEY STAGE TWO

Strand	Substrand	Content domain reference
Number and place value	counting (in multiples)	N1
	read, write, order and compare numbers	N2
	place value; roman numerals	N3
	identify, represent and estimate; rounding	N4
	negative numbers	N5
	number problems	N6
Strand	Substrand	Content domain reference
Addition, subtraction, multiplication and division (calculations)	add / subtract mentally	c1
	add/ /subtract using written methods	C2
	estimate, use inverses and check	c3
	add/subtract to solve problems	c4
	properties of number (multiples, factors, primes, squares and cubes)	cs
	multiply / divide mentally	${ }^{6}$
	multiply / divide using written methods	c7
	solve problems commutative, associative, distributive and all four operations)	c8
	order of operations	c9
Fractions, decimals and percentages	recognise, find, write, name and count fractions	F1
	equivalent fractions	F2
	comparing and ordering fractions	F3
	add / subtract fractions	54
	multiply / divide fractions	${ }^{5}$
	fractions/decimals equivalence	F6
	rounding decimals	${ }^{7}$
	compare and order decimals	F8
	multiply / divide decimals	${ }^{9} 9$
	solve problems with fractions and decimals	F10
	fractions /decimal / percentage equivalence	F11
	solve problems with percentages	F12
Ratio and proportion	relative sizes, similarity	R1
	use of percentages for comparison	R2
	scale factors	R3
	unequal sharing and grouping	R4

Strand	Substrand	Content domain reference
Algebra	missing number problems expressed in algebra	A1
	simple formulae expressed in words	A2
	generate and describe linear number sequences	A3
	number sentences involving two unknowns	A4
	enumerate all possibilities of combinations of two variables	As
Measurement	compare, describe and order measures	M1
	estimate, measure and read scales	M2
	money	M3
	telling time, ordering time, duration and units of time	M4
	convert between metric units	M5
	convert metric/ imperial	M6
	perimeter, area	M7
	volume	M8
	solve problems (a, money; b, length; c, mass / weight; d, capacity / volume)	м9
Geometry - properties of shapes	recognise and name common shapes	G1
	describe properties and dassify shapes	G2
	draw and make shapes and relate 2-D to 3-D shapes (including nets)	G3
	angles - measuring and properties	64
	circles	G5
Geometry - position and direction	patterns	P1
	describe position, direction and movement	P2
	co-ordinates	P3
Statistics	interpret and represent data	S1
	solve problems involving data	52
	mean average	53

Teaching and learning

We provide all pupils with direct teaching every day, which is interactive and stimulating and gives pupils a chance to discuss mathematical ideas with each other. Teaching styles and lesson structure provide opportunities for pupils to consolidate their previous learning, use and apply their knowledge, understanding and skills, pose and ask questions, investigate mathematical ideas, reflect on their own learning and make links with other work.

Our approach to teaching is based on key principles:

- A dedicated mathematics lesson every day;
- Direct teaching and interactive oral work (supported by teacher modelling)
- An emphasis on mental calculation (whilst being able to explain their methods); within a lesson there is an appropriate range of elements in the teaching, namely directing, instructing, demonstrating, explaining and illustrating, questioning and discussing, consolidating, evaluating responses and summarising. Pupils are encouraged to make decisions, communicate their understanding to others and to reason. Teachers aim to create an environment where pupils are secure and feel confident in being able to take risks in their learning.

Teachers are responsible for planning and teaching all elements of the mathematics curriculum to their pupils. Years 1-6 use a combination of Inspire, White Rose and Fluent in Five to help plan lessons. Teachers plan weekly and it is adapted to meet the needs of the pupils. The mathematics subject leader provides support and guidance to all teachers. Most teachers are supported by Learning Support Assistants whose work is directed by the teacher. In general, their role is to help the pupils they work with derive as much benefit and make as much progress in lessons as possible.

Our Calculation Policy has been put together in line with the new National Curriculum to outline the progressive calculation skills children need to master.

In class, teachers plan and deliver lessons with flexibility ensure the pitch and pace suit the children within their classes. Teaching will range from whole class, group, paired or individual work. Further information about new approaches to teaching at Trimley St Mary Primary School can be found below under the heading, Mathematical Mastery.

In our Reception classes, teaching also ranges from whole class, group, paired or individual work but with sessions lasting typically 20 minutes depending on the focus. Maths activities are accessible at all times during child initiated learning.

As a school, we use the Big Maths scheme to enhance our number knowledge and recall of number facts using weekly Big Maths Beat That, CLIC and SAFE challenges. These are of differing levels to suit individual pupil needs.

Children whom would benefit from a more personalised, smaller group for maths, have the opportunity to do o in Years 2 and 6 currently, though this can change depending on need. Any children entering year 3 without the firm foundations needed in basic calculation and number skills, access the 'Breaking Barriers' intervention scheme. In years 5/6 we also have a specialist support group for children with extreme barriers to access the maths curriculum which builds upon 'Breaking Barriers' in lower KS2 and focusses on functional number skills.

Using concrete, pictorial and abstract representations

To support the 'Singapore approach' to teaching key concepts in mathematics, (see Mathematical Mastery), lessons are planned so that children can use a variety of different representations. Often, learning begins with the use of concrete apparatus to represent a problem; children use the manipulatives to practically explore the problem. Following this, pictorial representations or diagrams can be used to represent problems with or without the apparatus alongside. This approach aims to secure children's understanding of a concept, such as doubling numbers, before they work with the abstract representation of numbers and symbols. The video below show's this theory in practice.

The school has invested heavily in the 'Inspire' maths scheme, with textbooks provided for every year group (1-6) to support teaching and learning alongside many other resources. Inspire Maths is a whole-school primary maths programme that provides everything you need to support a mastery approach to teaching and learning mathematics, and meet the higher expectations of the National Curriculum. It follows world-leading pedagogy based on the My Pals are Here! series, a programme used in almost 100\% of Singapore's state primary schools.

Each classroom and break out area has access to a range of concrete materials for children to use to support their mathematical understanding including bead strings, counters, numicon, place value cards, compare bears, and multilink to name but a few.

Fluency

Fluency is one of the three aims for the 2014 national curriculum. It is also one of NCETM's 'Five Big Ideas of Teaching for Mastery' where it's defined as "quick and efficient recall of facts and procedures and the flexibility to move between different contexts and representations of mathematics".

Three stages of fluency

1. Simple strategies

Initially, as a child gets to grips with a new skill, they can work out an answer using concrete resources or counting strategies. This will probably help them solve a problem accurately, but it's not the most efficient strategy.

2. Mental calculations

As learners become more proficient with new learning, they reach the second stage of fluency. Learners at this stage can work out an answer in their head. It still requires some thinking and effort as they develop reasoning strategies, but they're well on their way to becoming more efficient.
3. Achieving fluency

Finally, children reach the stage of 'I just knew it'. They can reliably produce accurate answers in an efficient way. This stage often involves using their knowledge flexibly; making connections so that the known can be used to work out the unknown.

In the words of Mark McCourt, "we consider someone to be fluent in a technique, procedure, idea, concept or fact at the point at which they no longer need to give attention".

We pay great attention to our children achieving mathematical fluency and time is set aside in every maths lesson to become more fluent. Children from KS1-KS2 participate in daily 'Fluent in Five' session within their maths lessons to practise key calculation skills. The aim is to build competency and pace with arithmetic.

Fluent in Five IV.III.MMXX			Example of Fluent in Five for lower set Year 6 Maths. Pupils select a level of challenge independently.
Brave	Adventurows	Daring	
1. $3^{3}+9^{2}$	1. $6^{3}+9^{2}$	1. $16^{2}+6^{3}$	
2. $71.23 \div 10$	2. 15% of 60	2. 36% of 50	
3. $89 / 3$	3. $123 / 7=$	3. $156 / 11=$	
4. 67×892	4. $82.39 \div 100$		
5. $1 / 4+5 / 12$	5. $4 / 77+11 / 1 / 4$	5	

Rapid Reasoning provides at least three questions a day for Years 3-6 and is designed to help children develop and practise their reasoning skills. It is designed to complement Third Space Learning's Fluent in Five resource, which provides daily fluency practice. Rapid Reasoning has been carefully structured with progression through the KS2 curriculum in mind.

Regular opportunities for children to practise, recap and apply their reasoning and problem-solving skills are important. Problem solving and reasoning is what makes maths; 'maths' rather than just an exercise in recalling and following instructions or facts. Two of the three aims of the National Curriculum for maths focus on problem solving and reasoning.

At Trimley St Mary, it is the expectation that all children in KS2, take part in some sort of reasoning activity daily within their maths lesson. These may be from Third Space learning or devised by individual staff to complement learning taking place in the main body of the lesson.

```
Rapid Reasoning | Questions
```

$$
\text { Year 6| Week } 2 \mid \text { Day } 5
$$

Q1
Vicky writes down three numbers: rite down two things that are the same umbers and two things that are different.

Same:
\qquad
\qquad

Different:
\qquad
\qquad
$\overline{1 \text { mark }}$

- THIRD SPACE LEARNING

Q2 The difference between two whole numbers is four.

When each number is rounded to the
nearest hundred, the difference between them is 100 .
Write two possible values for the sets of numbers.

$\overline{2 \text { marks }}$
Q3 Marley says " $\frac{3}{4}$ and $\frac{21}{28}$ are equivalent."
 ${ }^{1 \text { mark }}$

Vocabulary

It is vital that pupils are introduced to mathematical vocabulary and that they build upon this knowledge. Without a secure grasp of subject specific vocabulary, reasoning is extremely difficult. Pupils are introduced to new vocabulary with lessons and this is added to working walls for future reference.

Resourcing

In addition to the Inspire textbook and online resources, staff make use of White Rose schemes of work, resources from the NCETM, Angles Maths Hub and via our work with maths consultant Liz Gibbs.

Assessment and recording

Pupil progress is regularly monitored. Pupils who are identified as greater depth will be challenged fully, while any children who are struggling will receive appropriate support and will be identified in the year group and subject specific Raising Attainment Plans (RAPs).

Short-term assessments:
Teachers keep their own records of those pupils whose progress is markedly different from that which is expected. Staff have flexibility to assess children as they see fit, using a range of quizzes, SATs papers, formative and summative assessment.

Medium-term assessments:
Each term, children will complete a PUMA test. This will give a scaled score with 100 being average (as in SATS). These scores will form part of the assessment and will give an indication of the progress being made.

End of year curriculum expectations

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
*Count to and across 100, forwards and backwards, beginning with 0 or 1 , or from any given number. *Read and write numbers to 100 in numerals. *ildentify and represent numbers using objects and pictorial representations including the number line (numbers to at least 30). *Use the language of: equal to, more than, less than (fewer), most, least. -Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs. \&Add and subtract one-digit and twodigit numbers to 20 , including zero (using concrete objects and pictorial representations). \bullet Recall and use doubles of	-Recognise the place value of each digit in a two-digit number (tens, ones). - Partition numbers in different ways (e.g. $23=20$ +3 and $23=10+13)$. *Compare and order numbers from 0 up to 100; use and = signs. \& Find 1 or 10 more or less than a given number. \&Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 (bonds totalling 5, 10 and 20). \&Add and subtract numbers using concrete objects, pictorial representations, and mentally, including: a twodigit number and ones, a two-digit number and tens, two two-digit numbers, adding three one-digit	*Read and write numbers up to 1000 in numerals and in words. \&ildentify, represent and estimate numbers using different representations (including the number line). *Recognise the place value of each digit in a three-digit number (hundreds, tens, ones). ©Partition numbers in different ways (e.g. 146 $=100+40+6$ and $146=$ 130+16). \& Compare and order numbers up to 1000 . \& Find 1,10 or 100 more or less than a given number. \& Round numbers to at least 1000 to the nearest 10 or 100 . $\boldsymbol{*}$ Find the effect of multiplying a one- or two-digit number by 10 and 100 , identify the value of the digits in the answer. \&Choose an appropriate	ヶRead and write numbers to at least 10000. - Recognise the place value of each digit in a four-digit number. \&ildentify the value of each digit to two decimal places. ※Partition numbers in different ways (e.g. $2.3=2+0.3 \& 1+1.3$). $\%$ identify, represent and estimate numbers using different representations (including the number line). *Order and compare numbers beyond 1000 . *Order and compare numbers with the same number of decimal places up to two decimal places. ゅFind 0.1, 1, 10, 100 or 1000 more or less than a given number. *Round any number to the nearest 10, 100 or 1000 . \approx Find the effect of dividing a one- or	* Add and subtract numbers mentally with increasingly large numbers and decimals to two decimal places. A. Add and subtract whole numbers with more than 4 digits and decimals with two decimal places, including using formal written methods (columnar addition and subtraction). \& Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why. * Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers. © Use partitioning to double or halve any number, including decimals to two	*Perform mental calculations including with mixed operations and large numbers and decimals. *Add and subtract whole numbers and decimals using formal written methods (columnar addition and subtraction). *Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why ©Perform mental calculations, including with mixed operations and large numbers. \&Multiply multidigit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication. \&Multiply one-digit numbers with up to two decimal places by

all numbers to 10 and corresponding halves.
*Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher. \#Understand that a fraction can describe part of a whole. *Recognise, find and name a half as one of two equal parts of an object shape or quantity (including measure).
*Recognise and name common 2-D shapes, including rectangles (including squares), circles and triangles. *Recognise and name common 3-D shapes, including cuboids (including cubes), pyramids and spheres. \&Compare, describe and solve practical problems for: - lengths and heights (for example, long / short, longer / shorter. tall / short, double / half). mass/weight (for example, heavy / light, heavier than, lighter than). - capacity and volume (for example, full/empty, more than, less than, half, half full, quarter). - time (for example, quicker, slower, earlier, later). \&Recognise and use language relating to dates, including days of the week, weeks, months
numbers. \&Solve problems with addition and subtraction including with missing numbers: - using concrete objects and pictorial representations, including those involving numbers quantities and measures. ©Understand multiplication as repeated addition and arrays.
\because Understand division as sharing and grouping and that a division calculation can have a remainder. \because Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers.

- Derive and use doubles of simple two-digit numbers (numbers in which the ones total less than 10). \&Derive and use halves of simple two-digit even numbers (numbers in which the tens are even).
\&Calculate mathematical statements for multiplication using repeated addition) and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs \& Understand that a fraction can describe part of a set. »Understand that the larger the denominator
strategy to solve a calculation based upon the numbers involved (recall a known fact, calculate mentally, use a jotting, written method).

\&Recall/use

addition/subtraction facts for 100 (multiples of 5 and 10). *Add and subtract numbers mentally, including: a three-digit number and ones, a threedigit number and tens, a three-digit number and hundreds. \&Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction. \&Recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables. *Derive and use doubles of all numbers to 100 and corresponding halves.
\because Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods.
\& Understand that finding a fraction of an amount relates to division.
↔Recognise that tenths
arise from dividing objects
two-digit number by 10 and 100 , identifying the value of the digits in the answer. \&Choose an appropriate strategy to solve a calculation based upon the numbers involved (recall a known fact, calculate mentally, use a jotting, written method). - Recall and use addition and subtraction facts for 100. \&Recall and use +/facts for multiples of 100 totalling 1000. \&Add and subtract mentally combinations of two and three digit numbers and decimals to one decimal place. \&Add and subtract numbers with up to 4 digits and decimals with one decimal place using the formal written methods of columnar addition and subtraction where appropriate. ©Estimate; use inverse operations to check answers to a calculation. \&Recall multiplication and division facts for multiplication tables up to 12×12. $\%$ Use partitioning to double or halve any number, including decimals to one decimal place. ©Multiply two-digit and three-digit numbers by a one-digit number using formal written layout. ゃDivide numbers up to 3 digits by a
decimal places. \& Multiply and divide numbers mentally drawing upon known facts. \& Solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes. * Multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers. \& Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context. \& Recognise mixed numbers and improper fractions and convert from one form to the other.
\because Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths.

- Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents. \&Add and subtract fractions with denominators that are the same and that are multiples of the same number (using diagrams). *Recognise the per cent
whole numbers. \&Divide numbers up to 4 digits by a two-digit whole number using the formal written methods of short or long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context. \&Use written division methods in cases where the answer has up to two decimal places. -Solve problems involving all four operations, including those with missing numbers. \&Use common factors to simplify fractions; use common multiples to express fractions in the same denomination. \&Recall and use equivalences between simple fractions, decimals and percentages, including in different contexts. \&Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions. \&Multiply simple pairs of proper fractions, writing the answer in its simplest form e.g. 14×12 $=18 *$ Solve problems involving the calculation of percentages (e.g. of measures and such as 15% of 260) and the use of percentages for comparison »Draw 2-D the hour and draw the hands on a clock face to show these times.
\&Recognise and know the value of different denominations of coins and notes. ©Sort objects, numbers and shapes to a given criterion and their own.
is, the more pieces it is split into and therefore the smaller each part will be. \leftrightarrow Identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line. \&identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces \&Use mathematical vocabulary to describe position, direction and movement, including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and threequarter turns (clockwise and anti-clockwise).
*Choose and use appropriate standard units to estimate and measure length/height in any direction (m/cm); mass $(\mathrm{kg} / \mathrm{g})$; temperature $\left({ }^{\circ} \mathrm{C}\right)$; capacity and volume (litres/ml) to the nearest appropriate unit, using rulers, scales,
thermometers and measuring vessels (within children's place value competence). \&Find different combinations of coins that equal the same amounts of money. \&Tell and write the time to five minutes, including quarter
into 10 equal parts and in dividing one-digit numbers or quantities by 10 .
\& Recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators.
- Recognise and show, using diagrams, equivalent fractions with small denominators. *Draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them. \&identify right angles, recognise that two right angles make a halfturn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle. \&ildentify horizontal and vertical lines and pairs of perpendicular and parallel lines. *Measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg/g); volume/capacity ($/ \mathrm{ml}$). \&Understand perimeter is a measure of distance around the boundary of a shape. \&Tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12-hour and 24-hour clocks
*Record/compare time in
one-digit number using the formal written method of short division and interpret remainders appropriately for the context. \&Use estimation and inverse to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy. \&Recognise, find and write fractions of a discrete set of objects including those with a range of numerators and denominators. \&Recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten. ©Recognise and show, using diagrams, families of common equivalent fractions. -Recognise and write decimal equivalents of any number of tenths or hundredths. ゅAdd and subtract fractions with the same denominator (using diagrams). Compare and classify geometric shapes, including quadrilaterals and triangles,
symbol (\%) and understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100, and as a decimal. \&Distinguish between regular and irregular polygons based on reasoning about equal sides and angles. \&Plot specified points and complete shapes. 』Draw given angles, and measure them in degrees (${ }^{\circ}$).
\because identify: angles at a point and one whole turn (total 360°), angles at a point on a straight line and half a turn (total 180°).
\because Estimate (and calculate) volume ((e.g., using 1 cm 3 blocks to build cuboids (including cubes) and capacity (e.g. using water). \& Convert between different units of metric measure. \&Understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints. - Calculate and compare the area of rectangle, use standard units square centimetres (cm2) and square metres (m2) and estimate the area of irregular shapes \&Use all four operations to solve problems involving
shapes using given dimensions and angles. *Recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles. \&Find unknown angles in any triangles, quadrilaterals, regular polygons.
*Describe positions on the full coordinate grid (all four quadrants). \&Express missing number problems algebraically. \&Find pairs of numbers that satisfy an equation with two unknowns \&Use, read and write standard units of length, mass, volume and time using decimal notation to three decimal places. \&Solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate. \& Interpret and construct pie charts and line graphs and use these to solve problems.

| | past/to the hour and draw
 the hands on a clock face
 to show these times.
 \&Know the number of
 minutes in an hour and the
 number of hours in a day. | terms of seconds, minutes,
 hours; use vocabulary such
 as o'clock, a.m./p.m.,
 morning, afternoon, noon,
 midnight. \& Know the
 number of seconds in a
 minute and the number of
 days in each month, year
 and leap year. \&Add and
 subtract amounts of
 money to give change,
 using both $£$ and p in
 practical contexts. | measure using decimal
 notation, including scaling.
 \& Complete, read and
 interpret information in
 tables and timetables |
| :--- | :--- | :--- | :--- | :--- |

CALCULATION POLICY

EYFS Addition

	Solve simple one-step problems that involve addition using concrete objects and pictorial representations, and missing number problems. Explain methods \& reasoning Use the 100 square to add 10 to a single digit number Record addition by: - showing jumps on prepared number lines - recording number sentences Eg $6+5=11$ Read, write and interpret mathematical statements involving addition (+) and equals (=) signs		
Useful IWB links for manipulatives	https://www.coolmath4kids.com/manipulatives/base-ten-blocks https://mathsbot.com/manipulatives/placeValueCounters https://mathsbot.com/manipulatives/bar https://classroomsecrets.co.uk/free-year-1-part-whole-model-iwb-addition-and-subtraction-activity/ https://www.nctm.org/Classroom-Resources/Illuminations/Interactives/Ten-Frame/ http://www.ictgames.com/mobilePage/tenFrame/index.html		

Year Two Addition

	Mental Strategies	Concrete	Pictorial	Abstract	Vocabulary	Models, Images and resources
$\begin{gathered} \text { Year } \\ 2 \end{gathered}$	Add numbers using concrete objects, pictorial representations, and mentally, including: add a single-digit number to a twodigit number, including crossing the tens boundary, e.g. $23+5$,, then $28+5$ add a multiple of 10 to any two-digit number, e.g. $27+60$ add two two-digit numbers	TO + O bridging the tens. e.g. 24 added to 7	TO + O bridging the tens. e.g. 24 added to 7	TO + O bridging the tens. e.g. 24 added to 7 $\begin{align*} & 7+24=31 \tag{31}\\ & 24+7=31 \\ & 31=24+7 \\ & 31=7+24 \end{align*}$	Add Sum More than Total Altogether Plus Digit Partition into tens and ones	100 square Number lines Number tracks Bead strings (for children) Bead bar Tens Frame Numicon Place Value Disks Cuisenaire

		https://classroomsecrets.co.uk/free-year-1-part-whole-model-iwb-addition-and-subtraction-activity/ https://www.nctm.org/Classroom-Resources/Illuminations/Interactives/Ten-Frame/ http://www.ictgames.com/mobilePage/tenFrame/index.html

Year 3 Addition

Year 4 Addition


```
MA5: Round & Adjust
    45 + 39=84
    45+40-1
        85-1=84
```

Add near doubles of two-digit numbers, e.g. $38+37$

MA4: Double \& Adjust
$37+38=75$
$37+37+1$
$74+1=75$
Understand addition as inverse of subtraction

Know the related vocabulary for addition

sum 10

(A7i: Colunin Addtion

Compact columnar addition

Add numbers with up to 4 digits using the efficient written column method Practise with increasingly large numbers to aid fluency.

Estimate and use inverse operations to check answers
Solve addition two-step problems in contexts, deciding which operations and methods to use and why. Include problems involving decimals in money or measures eg. $6.3 \mathrm{~m}+3.7 \mathrm{~m}=$ 10m
Where there are more than 2 addends in a column -add up the digits efficiently

Crossing
tens
boundary
Inverse
addend

| Useful IWB links for
 manipulatives | $\underline{\text { https://www.coolmath4kids.com/manipulatives/base-ten-blocks }}$ |
| :--- | :--- | :--- |
| $\underline{\text { https://mathsbot.com/manipulatives/placeValueCounters }}$ | |
| $\underline{\text { https://mathsbot.com/manipulatives/bar }}$ | |
| https://classroomsecrets.co.uk/free-year-1-part-whole-model-iwb-addition-and-subtraction-activity/
 https://www.nctm.org/Classroom-Resources/Illuminations/Interactives/Ten-Frame/
 $\underline{\text { http://www.ictgames.com/mobilePage/tenFrame/index.html }}$ | |

Year 5 and 6 Addition

Add a near multiple of 10, 100 and 1000 to any two-digit,	MA5: Round \& Adjust $\begin{aligned} & 345+298=643 \\ & \begin{array}{c} 345+300-2 \\ 645-2=643 \end{array} \end{aligned}$
number or four-digit number, e.g. $235+198$	MA5: Round \& Adjust Yeat $4645+1996=6641$ $4645+2000-4$ $6645-\quad 4=6641$

Add pairs of decimal fractions each with units and tenths, e.g. $5.7+2.5,6.3+4.8$ Y6

Calculate mentally with increasingly large numbers and more complex calculations. Including Counting on in multiples

MA2a: Counting On
$\left.\begin{gathered} 43,826+30,000=73,826 \\ \mid+30,000 \end{gathered} \right\rvert\,$
43,826, 73,826

Addition facts for multiples of 10 to 1000 and decimal numbers with one decimal place,
e.g.
$650+=930$
$+1.4=2.5$
MA5: Round \& Adjust
$45.2+49.9=95.1$
$45.2+56-0.1$
$45.2+50-0.1$
$95.2-0.1=95.1$

Compact columnar addition

Add numbers with up to 4 digits using the efficient written column method Practise with addend increasingly large numbers to aid fluency.
Estimate and use inverse operations to check answers
Solve addition two-step problems in contexts, deciding which operations and methods to use and why. Include problems involving decimals in money or measures eg. $6.3 \mathrm{~m}+3.7 \mathrm{~m}=10 \mathrm{~m}$ Practise addition for larger numbers, using the efficient written methods of columnar addition.

Where there are more than 2 addends in a column -add up the digits efficiently

EYFS Subtraction

	Children make a record in pictures, words or symbols of subtraction activities carried out. Solve simple problems using fingers	Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used). Calculate the difference between 8 and 5 .	Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.	Can represent difference in a bar model	How many fewer is ... than Difference between Is the same as	Base tens and ones
	Useful IWB links for manipulatives	https://www.coolmath4kids.com/manipulatives/base-ten-blocks https://mathsbot.com/manipulatives/placeValueCounters https://mathsbot.com/manipulatives/bar https://classroomsecrets.co.uk/free-year-1-part-whole-model-iwb-addition-and-subtraction-activity/ https://www.nctm.org/Classroom-Resources/Illuminations/Interactives/Ten-Frame/ http://www.ictgames.com/mobilePage/tenFrame/index.html				

Year One Subtraction

	Mental Strategies	Concrete	Pictorial	Abstract	Vocabulary	Models, Images and resources
Year 1	Subtract a pair of one digit numbers e.g. 9-5-see EYFS Subtract a single-digit number from a teens	Subtraction within 10	Subtraction within 10 Draw 7 cookies and cross out 4 Draw a first, then, now	Subtraction within 10	As above Count back Count on	100 square Number lines Number tracks

Year Two Subtraction

Year 3 Subtraction

Year 4 Subtraction

Mental Strategies	Concrete	Pictorial	Abstract	Vocabulary	Models, Images and resources

Year 5 and Year 6 Subtraction

	Mental Strategies	Concrete	Pictorial	Abstract	Vocabulary	Models, Images and resources
Year 5 And Year 6	Subtract numbers with increasingly large numbers to aid fluency e.g. 12 $462-2300=10162$ Use rounding to check answers and determine, levels of accuracy Subtract a pair of two or three-digit multiples of 10, e.g. 80-30, 45-36 and 450-360 Subtract a near multiple of 10 or 100 from any two-digit or three-digit number, e.g. 235-199 Subtract pairs of decimal fractions each with ones and tenths, e.g. 5.7-2.5, 6.3- 4.8 See Y3 missing subtrahend and addend problems.	Subtract whole numbers with more than 4 digits and increasingly large numbers using efficient column written methods with decomposition to aid fluency Please see the Year 3 and Year 4 examples as they have the same principles Negative numbers First it was seven Then 9 was cut off Now there 2 cm less than the start Use practical apparatus to show change First it was 9 degrees Now it is -3 degrees What was the change?	Subtract whole numbers with more than 4 digits and increasingly large numbers using efficient column written methods with decomposition to aid fluency Please see the Year 3 and Year 4 examples as they have the same principles Negative numbers Negative numbers represent change The temperature was $9^{\circ} \mathrm{C}$ in the day, then it dropped to $-3^{\circ} \mathrm{C}$ at night. What was the change in temperature?' Day	Subtract whole numbers with more than 4 digits and increasingly large numbers using efficient column written methods with decomposition to aid fluency Please see the Year 3 and Year 4 examples as they have the same principles Negative numbers $7-9=-2$ There is a negative difference of 2 The difference between 9 and -3. Summary: The temperature dropped by $12^{\circ} \mathrm{C}$.	Subtraction Partition into hundreds, tens and ones Empty number line Count on Carry back First Then Now Subtrahend Minuend Difference Find the difference Decrease / reduced by Negative change	100 square Number lines Number tracks Bead strings (for children) Bead bar Tens Frame Numicon Place Value Disks Cuisenaire Base hundreds tens and ones Arrow Cards

EYFS Multiplication

	Mental Strategies	Concrete	Pictorial	Abstract	Vocabulary	Models, Images and resources
EYFS	The link between addition and multiplication should be introduced though doubling. If available, Numicon is used to visualise the repeated adding of the same number. These can then be drawn around or printed as a way of recording. Real life contexts and use of practical equipment to count in repeated groups of the same size: How many wheels are there altogether?	Repeated grouping/repeated addition	Children to draw the concrete resources they are using.	Write the number sentence $2+2+2=6$	Lots of Groups of Times Repeated addition Double	100 square Number lines Number tracks Bead strings (for children) Bead bar Tens Frame Numicon

Count in twos; fives; tens both aloud and with objects.	Children are given multiplication problems set in a real life context. Children are encouraged to visualise the problem. How many fingers on two hands? How many sides on three triangles? How many legs on four ducks? Children are encouraged to read number sentences aloud in different ways "five times two makes ten" "ten Is equal to five multiplied by two"	Place Value Disks Cuisenaire Base tens and ones
Useful IWB links for manipulatives	https://www.coolmath4kids.com/manipulatives/base-ten-blocks https://mathsbot.com/manipulatives/placeValueCounters https://mathsbot.com/manipulatives/bar https://classroomsecrets.co.uk/free-year-1-part-whole-model-iwb-addition-and-subtraction-activity/ https://www.nctm.org/Classroom-Resources/Illuminations/Interactives/Ten-Frame/ http://www.ictgames.com/mobilePage/tenFrame/index.html	

Year One Multiplication

Year Two Multiplication

Mental Strategies	Concrete	Pictorial	Abstract	Vocabulary	Images and
resources					

Year 3 Multiplication

	Mental Strategies	Concrete	Pictorial	Abstract	Vocabulary	Models, Images and resources
$\begin{gathered} \hline \text { Year } \\ 3 \end{gathered}$	Recall and use multiplication facts for the 4,8 and 3 multiplication tables Practise mental recall of x tables to improve fluency. Use doubling to connect	Consolidate 2, 510 times table Please see Y2 examples 4, 8 then 3 times table Please see Y2 examples as they hold the same principles Make connections x10	Consolidate 2, 510 times table Please see Y2 examples 4, 8 then 3 times table Please see Y2 examples as they hold the same principles Make connections x10	Consolidate 2, 510 times table Please see Y2 examples 4, 8 then 3 times table Please see Y2 examples as they hold the same principles Make connections x10	Lots of Groups of Times Repeated addition	100 square Number lines Number tracks Bead strings (for children)

tables.

Use x facts to derive related facts and write mathematical statements e.g. using $3 \times 2=6$ to derive 30 $\times 2=60$

Develop efficient mental methods using commutativity e.g. $4 \times 12 \times 5=4 \times 5$ $\times 12=20 \times 12=240$) Double any two-digit number, e.g. double 39 and any multiple of 5,10 or 100 , e.g. double 340, double 800,
Multiply one-digit or two-digit numbers by 10 or 100 and understand the effect e.g. $7 \times 100,46 \times 10$, 54×100

Know the vocabulary below Factor multiplied by factor equals product

$$
\begin{array}{ll}
\text { factor } & \text { product } \\
\mathbf{X} & =24
\end{array}
$$

$4 \times 3,4 \times 30,4 \times 300-$ use counters

Also use the Gattegno Chart to help

Simple 2 digit by one digit
Use dienes or counters

30000000000000 -०००००००००००००

Doubling all two digit numbers

$4 \times 30=120$ - draw it

Draw on a place value grid

100 s	10 s	1 s
	0	80
	$\times 10$	$\times 10$
0	0	0

Simple 2 digit by one digit
Draw it in a grid

10 s	1s
II	$\prime \prime \prime$
II	$\prime \prime \prime$
$\prime \prime$	$\prime \prime$
II	$\prime \prime \prime$
$\prime \prime \prime$	$\prime \prime \prime$

Draw it in a grid
See above

Doubling all two digit numbers

Simple 2 digit by one digit

$$
\begin{aligned}
23 \times 5 & =20 \times 5+3 \times 5 \\
& =100+15 \\
& =115
\end{aligned}
$$

$14 \times 314 \times 3=10 \times 3+4 \times 3$

$$
=30+12
$$

$$
=42
$$

Doubling all two digit numbers

Solve problems in context decide which operation to use and why, including missing number problems integer scaling problems eg double or treble 50p or $5 \times 60 \mathrm{~cm}$

Bead bar Tens Frame

Numicon

Place Value Disks

Cuisenaire
Base hundreds tens and ones

Arrow Cards Gattegno chart Place Value Grid

Year 4 Multiplication

	Mental Strategies	Concrete	Pictorial	Abstract	Vocabulary	Models, Images and resources
Year 4	Recall and practise multiplication facts for tables up to 12×12 to aid fluency. Use place value, known and derived facts to multiply mentally, including multiplying by 0 and 1	Consolidate 3, 4, 8 times table See Y3 guidance - same principle Learn the remaining tables to $\times 12$ See Y3 guidance - same principle Multiply 2 digit by one digit 24×3 - Use Dienes or counters	Consolidate 3, 4, 8 times table See Y3 guidance - same principle Learn the remaining tables to x 12 See Y3 guidance - same principle Multiply 2 digit by one digit 24×3 - Draw it II	Consolidate 3, 4, 8 times table See Y3 guidance - same principle Learn the remaining tables to $\times 12$ See Y3 guidance - same principle Multiply 2 digit by one digit Informal partition as in Y3 $\begin{array}{\|r\|r\|} \hline & 2 \\ x & 3 \\ \hline \end{array}$	Lots of Groups of Times Repeated addition Double	100 square Number lines Number tracks Bead strings (for children) Bead bar
				1 2 3×4 ones $=12$ ones 6 0 3×2 tens $=6$ tens 7 2		

TU by 4 or 8 , eg. 26×4 by doubling
three numbers
together
two digit by a unit eg.
17×3
numbers to 1000 by 10 and 100 (wholenumber answers) eg. $325 \times 10,42 \times 100$

Extend mental methods to HTU to derive facts e.g. $200 \times$ $3=600$ into $600 \div 3=$ 200

Recognise and use factor pairs e.g. give the factor pair associated with a multiplication fact, (if 2 $x 3=6$ then 6 has the factor pair 2 and 3)

Factor flower for 20

Know the vocabulary below
Factor multiplied by factor equals product
factor product
$\mathbf{X} \Delta=24$

Make connections $\times 10 \times 100$
$4 \times 3,4 \times 30,4 \times 300-$ use counters

Also use the Gattegno Chart to help

Make connections $\times 10 \times 100$
The counters can be drawn also

1000s	100s	10s	$1 s$
is	80	\bigcirc	\bigcirc

Pairs

Array
symbol x
times as
big ...as
wide ...as
long
factor product
multiple
ten times the size
hundred times the size
a tenth the size
hundredth the size
scaling

Tens Frame

Numicon

Place Value

Base hundreds tens and ones

Arrow Cards
Gattegno chart
Place Value Grid

Multiply using partitioning

Develop fluency in efficient written method of short multiplication
Write statements using the distributive law $39 \times 7=30 \times 7+9 \times 7$ and associative law $(2 \times 3) \times 4=2 \times(3 \times 4)$
Solve two step problems with increasingly harder numbers and in which n objects are connected to m objects eg. finding all possibilities ' 6 hats and 5 coats, how many different outfits?'

The wardrobe is 3 times the width of the cabinet. How wide is the wardrobe?
Understand multiplication as scaling, not just repeated addition.
E.g. "23, made 100 times the size, is 2,300 ."

Then they can solve simple equations

Year 5 and Year 6 Multiplication


```
to 100, e.g. }30\mathrm{ has the factor pairs 1 }\times30\mathrm{ ,
2\times15,3\times10 and 5 < 6
Establish whether a number up to 100 is prime and recall prime numbers up to 19
```


Recognise and use square and cube numbers, and relevant notation.

Multiply by 25 or 50 , e.g. $48 \times 25,32 \times 50$ Multiply whole numbers decimals by 10 , 100 and 1000 e.g. $4.3 \times 10,0.75 \times 100$

Multiply pairs of multiples of 10 , e.g. $60 \times$
30 , and a multiple of 100 by a single digit number, e.g. 900×8

$$
\begin{aligned}
30 \times 80 & =3 \times 8 \times 10 \times 10 \\
& =3 \times 8 \times 100 \\
& =2,400
\end{aligned}
$$

Use divisibility tests to identify multiples of $3,6,98$ and revise $2,4,10$ and 5

Year 6

Multiply two-digit decimals such as 0.8×7 and pairs of multiples of 10 and 100, e.g. $50 \times 30,600 \times 20$

Double decimals with units and tenths, e.g. double 7.6

Scale up and down using known facts, e.g. given that three oranges cost 24 p, find the cost of four oranges

Identify numbers with an odd number of factors (square numbers), even numbers of factors and no factor pairs other than 1 and themselves (prime numbers)

Explore the order of operations using brackets; eg. $2+1 \times 3=5$ and $(2+1) \times 3=$ 9.

Use multiplication facts to solve ratio and proportion problems.

Useful IWB links for manipulatives

Express a product as a multiple of three factors

[^0]EYFS Division

	Mental Strategies	Concrete	Pictorial	Abstract	Vocabulary	Models, Images and resources
EYFS	The ELG states that children solve problems, including doubling, halving and sharing.	Grouping Model Rose has 6 socks. She grouped them into pairs - how many pairs did she make?	Grouping Model Children to draw the concrete resources they are using.	Grouping Model Write the number sentence	Share Sharing grouping	100 square Number lines Number tracks

	Children need to see and hear representations of division as both grouping and sharing. Division can be introduced through halving. Count in twos; fives; tens both aloud and with objects.	Sharing Model I have 10 sweets. I want to share them with my friend. How many will we have each? Although not explicit in the Develo introducing young children to sim Setting the problems in real life c with concrete apparatus will supp "I have got 5 bones to share betw How many bones will they get eac	Sharing Model Children to draw the concrete resources they are using. ment Matters document, the shar halves as fractions. ext and solving them t children's understanding. my two dogs.	sweets shared \square equals sweets between equal \square each g model is a useful way of	Equal groups Left over Half halving	Bead strings (for children) Bead bar Tens Frame Numicon Place Value Disks Cuisenaire Base tens and ones
	Useful IWB links for manipulatives	https://www.coolmath4kids.com https://mathsbot.com/manipulat https://mathsbot.com/manipulat https://classroomsecrets.co.uk/fr https://www.nctm.org/Classroom http://www.ictgames.com/mobil	ipulatives/base-ten-blocks placeValueCounters bar ear-1-part-whole-model-iwb-ad ources/Illuminations/Interactiv /tenFrame/index.html	on-and-subtraction-activity/ Ten-Frame/		

Year One Division

	Mental Strategies	Concrete	Pictorial	Abstract	
Year	Share objects into equal groups and count how	Sharing using a range of objects. Focus on EQUAL groups 6 shared by 2	Sharing using a range of objects. Focus on EQUAL groups 6 shared by 2	Sharing using a range of objects. Focus on EQUAL groups 6 shared by 2	Share 100 square

Year Two Division

	Mental Strategies	Concrete	Pictorial	Abstract	Vocabulary
Images and resources					
Year 2	Practise to become fluent in recall and	Sharing using a range of objects.	Sharing using a range of objects.	Sharing using a range of objects.	Divide

use of multiplication and division facts for the 2,5 and 10 multiplication tables,

Halve any multiple of 10 up to 100,

Find half of even numbers to 40

Show that multiplication of two numbers can be done in any order
(commutative) and division of one number by another cannot

Introduce the symbol for division \div
\div

Please see the guidance for Year 1

Here is one example

30 flowers are shared equally between 5 vases.

Cubes and other manipulatives can be used also
Grouping using times tables 2510

40 divided into groups of 10 . $40 \div 10$

Pupils need to be able to represent problems where the total quantity and group size is known, using multiplication equations with missing factors. For example, "There are 15 biscuits. If I put them into bags of 5 , how many bags will I need?" can be represented by the following equation:
$\ldots . \times 5=15$
Pupils can use skip counting or their emerging 2,5 and 10 multiplication table fluency tocalculate the missing factor.

Number lines
Number
tracks

Bead strings (for children
Grouping
equal groups,
how many lots of, groups of...
half of
halved
symbol \div

Bead bar Tens Frame

Numicon

Place Value Disks

Cuisenaire

Base
hundreds
tens and ones

Arrow Cards

Year 3 Division

		2 digit divided by 1 digit with exchange with remainders Please see above worked examples exactly the same principle, with a remainder and the need for exchanging tens for ones. Solve problems in context deciding wh missing number problems measuring and money context correspondence problems in which m children; 40 cakes shared equally betw Use practical methods and jottings, in	2 digit divided by 1 digit with exchange with remainders Please see above worked examples - exactly the same principle, with a remainder and the need for exchanging tens for ones. ich method to use and why, including objects are connected to n objects eg een 8. luding remainders	Please see above worked examples exactly the same principle, with a remainder and the need for exchanging tens for ones. 12 sweets shared equally between 4			
		https://www.coolmath4kids.com/manipulatives/base-ten-blocks https://mathsbot.com/manipulatives/placeValueCounters https://mathsbot.com/manipulatives/bar https://classroomsecrets.co.uk/free-year-1-part-whole-model-iwb-addition-and-subtraction-activity/ https://www.nctm.org/Classroom-Resources/Illuminations/Interactives/Ten-Frame/ http://www.ictgames.com/mobilePage/tenFrame/index.html					

	dividend $20 \div 4=5$ duotient divisor $4 \longdiv { 5 \text { -quotient } }$ dividend $\stackrel{20}{20}=5$	Related Calculations E.g. 1200 pencils shared between 6 classes Develop fluency in efficient written number. (eg. $11 \div 2$ expressed as $51 / 2$ increasingly harder numbers includin 10 children. Introduce dividing using subtracting 10 lots of 4 are 40 , there will be 12 le	E.g. 1200 pencils shared between 6 classes Can be drawn out	\square \square ee cak more ere ar	$\begin{aligned} & \text { Ca } \\ & 0 \mathrm{p} \\ & \mathrm{~s} \\ & \hline 2 \\ & \hline 20 \\ & \hline \underbrace{20}_{40} \end{aligned}$		ns 2 20 $\overbrace{120}^{140}$ $=$ $=$ by a blem uall $\div 4$ in 5	be	ween 2 20 100 git een that	quotient a tenth of the size	
	Useful IWB links for manipulatives	https://www.coolmath4kids.com/manipulatives/base-ten-blocks https://mathsbot.com/manipulatives/placeValueCounters https://mathsbot.com/manipulatives/bar https://classroomsecrets.co.uk/free-year-1-part-whole-model-iwb-addition-and-subtraction-activity/ https://www.nctm.org/Classroom-Resources/Illuminations/Interactives/Ten-Frame/ http://www.ictgames.com/mobilePage/tenFrame/index.html									

Year 6 Division

[^0]: https://www.coolmath4kids.com/manipulatives/base-ten-blocks
 https://mathsbot.com/manipulatives/placeValueCounters
 https://mathsbot.com/manipulatives/bar
 https://classroomsecrets.co.uk/free-year-1-part-whole-model-iwb-addition-and-subtraction-activity/
 https://www.nctm.org/Classroom-Resources/Illuminations/Interactives/Ten-Frame/
 http://www.ictgames.com/mobilePage/tenFrame/index.htm|

